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Outline!

!   New solar corona and inner heliosphere model with low-
frequency Alfvén wave turbulence!
!  Physics included in this model!
!  Validation: EUV images!
!  Temperature anisotropy and plasma instabilities!
!  Validation: 1AU in-situ!
!  Validation: Charge state!

!   CMEs!
!   Magnetic flux emergence and regional models!
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Alfvén Wave Solar Model (AWSoM)!
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XMHD physics: 
• Separate Tp||, Tp⊥ and Te  • WKB equations for parallel and antiparallel propagating turbulence (w±) • Non-WKB physics-based reflection of w± results in turbulent cascade 
• Correction for presumed uncorrelated waves w± in the balanced 

turbulence near apex of closed field lines  
• Physics-based apportioning of turbulence dissipation (at the gyro-radius 

scales) into coronal heating of various species 
• Wave pressure gradient acceleration of solar wind plasma 
• Collisional and collisionless electron heat conduction 
• Radiative plasma cooling 

Boundary Conditions: 
• Radial magnetic field is derived from synoptic solar magnetograms 
• Poynting flux of outward propagating turbulence: 

B. van der Holst et al. ApJ 782, 81 (2014).	

R. Oran et al. ApJ 778, 176 (2013).	

I. Sokolov et al. 764, 23 (2013).	


(SA / B) =1.1×10
6Wm−2T−1



Computational Grids!
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Inner Heliosphere!Solar Corona!

!   AWSoM is split in two coupled framework components: stretched 
spherical grid for solar corona, cartesian grid for inner heliosphere!

!   Significant grid stretching to grid resolve the upper chromosphere and 
transition region in addition to artificial transition region broadening 
(Lionello et al. 2009, Sokolov et al. 2013)!

!   AMR to resolve the heliospheric currentsheet!



Validation: EUV Images for CR2107!
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Heat Partitioning for the Electron and 
Anisotropic Proton Temperatures!
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Limiting the Anisotropic Pressure!

7	


The instability-based anisotropic pressure relaxation towards the 
marginal stable pressure     while keeping averaged pressure p 
unmodified:!

applied in firehose, mirror and proton cyclotron unstable 
regions.     τ is taken to be the inverse of the growth rates of the 
instabilities (Hall 1979, 1980, 1981 and Southwood & Kivelson 
1993):!

instability criteria! relaxation time τ !

firehose!

mirror!

proton cyclotron!

δp||
δt

=
p|| − p||
τ

p||

X. Meng et al. 2012 JCP, JGR	




AWSoM with Temperature Anisotropy!
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!   Temperature anisotropy in the simulated 
Y=0 meridional slice!
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!   Temperature 
Anisotropy along 
the north axis!

X. Meng et al., submitted to ApJ	




Validation at 1AU!
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CR2109! CR2123!

ACE versus 2T and 3T models!



Validation: Charge State!
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!   The electron density, temperature and speed from the MHD 
model are used to drive charge state evolution along field 
lines, and compared to in-situ and remote observations!

C6+
 / 

C5+
	


Model	

Solar Wind In-Situ Charge States	


Ulysses	


R. Oran et al., submitted to ApJ	
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CME simulation with the AWSoM model: 
• Gibson-Low flux rope erupts from active region 11164 
• Model produces 3 part density of CME progenitors: 

dense streamer with low density cavity containing a 
dense core 

• SIR-CME interaction crucial to CME structure at 1AU 

M. Jin et al. in preparation	


March 7th 2011 CME Simulation!
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CME Simulation with the AWSoM Model: 
• Gibson-Low flux rope erupts from active region 10759  
• The simulation reproduces the magnetic cloud signatures at 1 AU including 

the Bz rotation. 

Manchester, van der Holst & Lavraud, 
Plasma Phys. Contol. Fusion, 56, 2014 .	


(SA / B) =1.1×10
6Wm−2T−1

May 13th 2005 CME Simulation!May 13th 2005 CME Simulation!



Magnetic Flux Emergence!
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Vertical stratification of 
density and temperature!

Initial flux rope (green rods) at 
Z = -10 Mm, surrounded by 
convective downflows (blue) 
and upflows (red)!

F. Fang et al., ApJ 754, 15 (2012).	




Build-up of Free Energy during 
Emergence!
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Plane: Photospheric Bz field!
Blue rods: model field!
Red rods: potential field!



Summary and Outlook!

!   AWSoM model for the solar corona and inner heliosphere:!
!  Alfvén-wave turbulence and three-temperature model!
!  Validation studies with EUV images and 1AU data shows that this model 

can capture many features of the solar corona and inner heliosphere!
!   AWSoM has just been transferred to CCMC for testing!

!  We are presently constraining the few model parameters to have good 
model-data comparison for all Carrington rotations.!

!   Arrival time and Bz at 1AU of CMEs using Gibson & Low flux ropes!
!  Next: automated procedure for flux rope initiation to predict arrival time 

and Bz!
!   Future directions:!

!  Regional model with MAGIC magnetogram processing suite of tools.!
!  coupling of flux emergence and regional models with the AWSoM solar 

wind model. Gabor Toth will present a new coupler that will be used.!
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